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General equations are derived for differential cross sections for collisions between anisotropic molecular
ensembles and electrons or atoms. In the obtained expressions geometrical and dynamical factors are separated.
The initial anisotropic axis distribution is characterized by “order parameters”; the information on the dynamics
is contained in “steric factors”. The results can be used to analyze experimental results and also as a basis
for numerical calculations. Several examples are discussed in order to point out the geometrical importance
of the relevant parameters for diatomic and polyatomic molecules. As an illustration, all relevant steric factors
are numerically calculated for elastic collisions between electrons and anisotropic ensembles of CO molecules.

1. Introduction

The dependence of chemical reactivity on orientation and
alignment of the reactants is a key issue in stereodynamics.
Extensive investigations of steric effects have been performed.
For a review of these developments, we refer to the articles by
Bernstein et al.,1 Simons,2 Delgado-Barrio,3 Loesch,4 Parker and
Bernstein,5 and Stolte.6 The treatment given in the present paper
is also appropriate for molecule-surface scattering (see for
example ref 7).
In the present paper we will develop and generalize the

existing theories of stereodynamical effects. We will derive
some basic formulas that will be useful for an exploitation of
the spatial aspects of collisions with diatomic or polyatomic
molecules. The prerequisite for measuring steric effects is the
preparation of an anisotropic distribution of axes of the
molecular target system prior to the reaction. Our first aim is
therefore to characterize the anisotropy of the initial ensemble.
We will discuss this in section 2 by developing the concept of
“order parameter”, introduced previously in other contexts (see
for example the treatment by Michl and Thulstrup8). Some
examples of experimental interest will be given in subsections
2.2 and 2.3 in order to clarify and visualize the geometrical
importance of the order parameters.
Our main topic, the description of reactions between projec-

tiles (electrons, atoms) and anisotropic molecular ensembles,
will be developed in section 3. General equations will be
described that relate the observable differential cross section to
the order parameters and that will allow to identify the relevant
“steric factors”. These expressions generalize former results
given in the literature (see e.g. ref 4 and references therein)
and can be used for an analysis of experiments and as a basis
for numerical calculations. The maximum information on the
stereodynamical properties of the collision, which can be
obtained under given experimental conditions, is contained in
the full set of all independent steric factors.
A comparison of experimental and theoretical data for all

relevant steric factors gives therefore the most detailed test of
the theoretical model under the given experimental condition.
The main experimental problem is therefore the measurement
of all steric factors, and we briefly consider the “theory of
measurement”. By plotting experimental results, some immedi-
ate conclusions can be drawn on the directional properties of
the collision, and we discuss this in section 4. In section 5 we

will illustrate the theory with numerical results for elastic
collisions between electrons and COmolecules. For a scattering
energy of 10 eV all relevant steric factors are plotted as a
function of the scattering angle, and their general behavior will
be discussed. Finally, in section 6, we summarize our main
results.
Throughout this paper the notation of Zare17 will be used.

2. Order Parameter and Axis Distribution Functions

2.1. General Expressions.The description of orientational
order plays an important role in the investigation of anisotropic
systems. Its first objective consists of the identification of a
set of parameters that characterize the sample of interest. Our
first task is therefore to discuss a way to systematically introduce
these parameters. Several formulations have been given in the
literature (see e.g. ref 8 and references therein). Here we will
apply and develop a description in terms of so-called “order
parameters”.8,9

Consider an ensemble of molecules with a nonuniform axis
distribution. These can be molecules adsorbed at surfaces or
in stretched polymers, or it may be the instantaneous axis
distribution of an anisotropic ensemble of rotating molecules
in the gas phase.
We introduce a right-handed coordinate systemxyzwhich is

defined by the process by which the anisotropic molecular
system has been prepared (“director system”). If the distribution
possesses a symmetry axis, this will be chosen as thez-axis.
This might be the direction of an orientating static field, the
electric field direction in laser pumping with linearly polarized
light, or the molecular beam axis in supersonic expansion
experiments.
We introduce a coordinate systemx′y′z′ rigidly connected with

the molecular framework. For diatomic molecules we will
choose the internuclear axis asz′. For planar molecules the
molecular plane will be taken asy′z′-plane. The orientation of
the molecule with respect to the director system is specified by
the three Euler anglesRâγ (see Figure 1). Here,â is the angle
betweenz andz′. R is the azimuth angle ofz′ in the director
frame; that is, it defines a rotation around the samplez-axis.
The third Euler angleγ specifies a rotation of thex′y′-plane
aroundz′. For γ ) 0 thex′-axis would lie in thezz′-plane.
The axis distribution of the molecular ensemble can be

characterized in terms of the distribution functionW(Râγ),
defined in such a way thatW(Râγ) dR dâ sin â dγ is the
probability of finding a molecule withx′y′z′-axes at a specificX Abstract published inAdVance ACS Abstracts,September 15, 1997.
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orientation fixed byRâγ. This function, as any other function
of the Euler angles, can be expanded in terms of the rotation
matrix elementsDQ′Q

(K) (Râγ):

We will use the convention of Zare,17 that is,

We will normalize according to

The expansion coefficients〈DQ′Q
(K) * 〉 are defined by the relation

where the star denotes the complex conjugate. Equation 4 is
obtained by multiplying eq 1 withDQ′Q

(K) *(Râγ), integrating
over all angles, and using the orthogonality of theD functions.
The knowledge of the set of all relevant coefficients〈DQ′Q

(K) * 〉
completely specifies the distribution. The parameters
〈DQ′Q

(K) * 〉 are usually called “order parameters”.8,9 For ran-
domly oriented moleculesW(Râγ) is constant, and all order
parameters withK * 0 vanish.
In general, the sum overK is infinite. In several cases the

sum is limited to a few terms. Excitation by light (from an
initially isotropic ensemble) produces only order parameters with
K e 2. For rotating molecules with sharp angular momentum
J we haveK e 2J.9 In other cases it has been found that only
the first few terms are of practical importance6,10,11 (see also
section 5).
For rotating molecules there is a close relationship between

the axis distribution of an ensemble, described by order
parameters, and its corresponding angular momentum distribu-
tion, described by state multipols〈TKQ

+ (J)〉. The relevant
relations for linear rotors, symmetric tops, and pendulum states
can be found in the literature (e.g. ref 9) and will not be given
here.
From the normalization condition (3) follows

From the definition (4) we obtain for example

which provides us with an average angle of orientation, and

From the symmetry properties of the rotation matrices follows

where 〈DQ′Q
(K) 〉 is defined by eq 4 withDQ′Q

(K) substituted for
DQ′Q
(K) *.
2.2. Conditions Following from the Symmetries of the

Preparation Process. Equation 1 simplifies under certain
conditions. We will consider here a few cases of practical
interest. Assume that the anisotropic molecular ensemble has
the following symmetry properties: (a) It is axially symmetric
aroundz. (b) It is invariant under reflection in any plane through
z (in particular in anyzz′-plane). Both conditions are satisfied,
for example, if an initially isotropic ensemble is aligned by
pumping with linearly polarized laser light or by orienting the
molecules with the help of an external electric field.9

Axial symmetry aroundzmeans that the probabilityW(Râγ)
must be independent ofR. From eqs 1 and 2 follows that this
is only possible if all order parameters withQ′ * 0 vanish. We
obtain therefore for axially symmetric axis distributions

where an integration overR has been performed. Since the
functionD0Q

(K) (Râγ) is independent ofR, we have putR ) 0 in
eq 6.
Let us now consider condition b. Sinceγ is the angle

between thezz′-andz′x′-planes of a given molecule, it follows
that γ is transformed into (-γ) under a reflection in thezz′-
plane. Invariance under this transformation requires

Substitution of this result into eq 4 and, using the symmetry
properties of the rotation matrices, yields the condition

Hence, all nonvanishing order parameters are real.
A further conditions holds if the preparation process defines

only anaxis, but nodirection. This is the case, for example,
in excitation processes with linearly polarized light because of
the rapid oscillation of its electric vector. Hence, the molecules
are unable to distinguish head from tail, and we have the
condition

Since

it follows that we shall only need to retain terms withK even
in eq 6. In this case an equal number of molecules havez′-
axis pointing in the (+z) and (-z) direction.
Of course, this result holds in any case if the molecules have

themselves a nonpolar shape (e.g., homonuclear diatomics).

Figure 1. Relation between molecular systemx′y′z′ and the director
systemxyz (only z′ is shown).

〈D00
(2)* 〉 ) 〈1/2(3 cos

2 â - 1)〉 (5c)

(i) order parameters withQ′ ) Q) 0 are real (5d)

(ii) 〈DQ′Q
(K) * 〉 ) 〈DQ′Q

(K) 〉* (5e)

(iii) 〈DQ′Q
(K) * 〉 ) (-1)Q′-Q〈D-Q′-Q

(K) 〉 (5f)

W(âγ) ) ∑
KQ

2K + 1

4π
〈D0Q

(K)* 〉D0Q
(K) (0âγ) (6)

W(Râγ) ) W(Râ,-γ)

〈D0Q
(K)* 〉 ) 〈D0Q

(K) 〉 (7)

W(Râγ) ) W(R,π+â,γ) (8)

d0Q
(K) (â) ) (-1)Kd0Q

(K) (π + â)

W(Râγ) ) ∑
KQQ′

2K + 1

8π2
〈DQ′Q

(K) * 〉DQ′Q
(K) (Râγ) (1)

DQ′Q
(K) (Râγ) ) e-iQ′R dQ′Q

(K) (â)e-iQγ (2)

∫02π
dR∫0πdâ sinâ∫02π

dγ W(Râγ) ) 1 (3)

〈DQ′Q
(K) * 〉 )

∫02π
dR∫0πdâ sinâ∫02π

dγ W(Râγ) DQ′Q
(K) *(Râγ) (4)

〈D00
(0)* 〉 ) 1 (5a)

〈D00
(1)* 〉 ) 〈cosâ〉 (5b)
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In general, we will call an axis distributionorientedif at least
one order parameter withK odd is different from zero and
aligned if only order parameter withK even contribute and
simply anisotropicif at least one order parameter withK * 0
is nonvanishing.
2.3. Conditions Following from Internal Symmetries of

the Molecular Shapes. Example.Internal symmetries of the
molecules are in particular reflected by theγ-dependence of
the distribution function. We give two examples in order to
clarify further the geometrical importance of the order param-
eters.
(i) Diatomic Molecules.We choose the molecular axisnb as

z′-axis. Because of the axial symmetry of the molecules around
z′, the x′- and y′-axis can be chosen arbitrarily, and the third
Euler angleγ becomes superfluous. (Usually one setsγ ) 0;
that is, the molecular coordinate system is chosen in such a
way that thex′-axis lies in thezz′-plane.) The molecular
distribution must be independent ofγ, and this requires that all
order parameter withQ * 0 vanish (as follows by inspecting
eqs 2 and 4). Equation 1 reduces to the expression

where we applied the relationDQ′0
(K) (Râγ) ) [4π/(2K + 1)]1/2

Y*KQ′(âR),the corresponding relation for the order parameters,
and used thatW(Râ) is real. Furthermore, an integration over
γ has been performed.
Assume now that the molecular axis distribution is axially

symmetric with respect to thez-axis of the director system. In
this case all order parameters withQ′ * 0 vanish, and eq 9
reduces to an expression in terms of Legendre polynomialsPK-
(cosâ)

where we have integrated overR and where the relevant order
parameters are defined by the relation

This case has often been discussed in the literature (see for
example the reviews by Stolte,6 Friedrich et al.,10 Simons,2 and
Loesch4). The axis distribution is completely specified in terms
of the set〈PK〉. The angleâ specifies the directional vector
correlation between the molecular axis and the “director” (z-
axis).
(ii) Molecules with C2ν Symmetry.A rotation of the molecules

around theC2-axis (z′) about an angleπ leaves all observational
properties invariant. Hence, we require

Substitution of this condition into eq 4 and use of eq 2 yields
the condition

Only order parameters withQ even contribute.
A reflection in the molecular plane (y′z′-plane) transformsx′

into -x′. Invariance under this condition yields

Specializing to axially symmetric systems (eqs 6 and 10), we
obtain that all order parameters withQ even are real.

Let us consider an explicit example: assume H2O molecules
have been aligned by pumping with linearly polarized laser light.
In this case only parameters withK ) 0 and K ) 2 are
nonvanishing (because of dipole selection rules). By using
conditions 5f, 6, and 7 and the structural information contained
in eqs 11 and 12, we obtain for the distribution function:

where we have inserted explicit expressions forD-functions.
For diatomic molecules〈D02

(2) 〉 would vanish, and the axis
distribution would be completely determined by knowledge of
the alignment parameter〈D00

(2) 〉, given by eq 5c which mea-
sures the alignment of the molecularz′-axis with respect toz.
For H2O molecules we need an extra angleγ in defining the
alignment of thex′y′-plane relative to the director system and
an extra parameter

This parameter specifies the difference between the alignment
of thex′- andy′-axis. If all molecules would be perfectly aligned
with their z′-axis parallel toz, we haveâ ) 0 and〈D00

(2) 〉 ) 1,
〈D02

(2) 〉 ) 0. If the z′-axis of all molecules would be perpen-
dicular to z, corresponding toâ ) π/2, we would have an
alignment 〈D00

(2) 〉 ) -1/2. If in addition all x′-axes are per-
fectly aligned parallel toz (γ ) 0), then〈D02

(2) 〉 ) (3/8)1/2. We
would have〈D02

(2) 〉 ) -(3/8)1/2 if the y′-axes would all point in
z-direction (γ ) π/2).
At the first sight it might be surprising that the distribution

function depends on the angleγ after excitation by linearly
polarized light. We will discuss the physical reason for this in
the Appendix.

3. Orientation/Alignment-Dependent Cross Sections

3.1. General Derivations. Steric Factors.In this section
we will consider reactions between an ensemble of molecules
and projectiles (atoms or electrons). We will derive some basic
formulations useful for an exploitation of the spatial aspects of
molecular processes, generalizing former attempts (see e.g. refs
12 and 13 and references therein). Assume that an anisotropic
molecular ensemble has been prepared in the director system
and that its axis distribution is given by eq 1. In order to have
a definite situation in mind, we will consider freely rotating
molecules in the gas phase with a nonuniform instantaneous
axis distributionW(Râγ).
This ensemble reacts with a beam of projectiles. The reaction

is most conveniently be described in a coordinate frameXYZ
where theZ-axis is parallel to the initial relative wave vector
kB0 and where the scattering plane (kB0-kB1-plane) is chosen as
theXZ-plane wherekB1 is the final relative wave vector (collision
system). The relation between director and collision system is
fixed by the three Euler anglesεδø. Here, δ is the angle
betweenz andZ, ε is the azimuth angle ofz in the collision
frame, and the third Euler angleø refers to a rotation of the
x-/y-axis aroundz. If the initial molecular ensemble is axially
symmetric aroundz, thenø is superfluous and can always be
put to zero, and thex-axis lies in thezZ-plane. This case is
illustrated in Figure 2 whereθ is the scattering angle. For
example, if the molecular ensemble has been prepared by a static
electric fieldEB||z, thenδ is the angle betweenEB and kB0. In

W(Râ) ) ∑
KQ'

〈Y*KQ′〉YKQ′(âR) (9)

W(â) ) 1/2∑
K

(2K + 1)〈PK〉PK(cosâ) (10)

〈PK〉 )∫0πdâ sinâW(â)PK(cosâ)

W(Râγ) ) W(Râ,γ+π)

〈DQ′Q
(K) * 〉 ) (-1)Q〈DQ′Q

(K) * 〉 (11)

W(Râγ) ) W(Râ,π-γ) (12)

W(âγ) ) 1
4π[1+ 5〈D00

(2) 〉1
2
(3 cos2 â - 1)+

5〈D02
(2) 〉2x3

8
sin2 â cos 2γ] (13)

〈D02
(2) 〉 ) (3/8)1/2〈sin2 â cos 2γ〉 (13a)
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supersonic expansionsδ would be the angle between the
molecular beam axis andkB0. The angleε will allow to describe
theazimuthal steric effects.6

Our basic approximation is that the collision time is much
shorter than the average rotation time of the molecules. The
“elementary” process is then a collision between a projectile
and a molecule with a specified orientation of its axesx′y′z′.
We will denote the differential cross section for the “elementary
collision” by σ(θ,R′â′γ′), whereR′â′γ′ specify the orientation
of x′y′z′ relative to the collision frame (see Figure 3). For
inelastic collisions a sum over excited degenerate states is
assumed to be included inσ(θ,R′â′γ′).
In our present case of interest the molecules are not sharply

oriented but are distributed according to the prepared axis
distribution (1). Thus, only the corresponding cross sectionσ-
(θ,εδø) can be measured. This observable is obtained by
averagingσ(θ,R′â′γ′) over the given initial axis distribution.

Here W(R′â′γ′) is the distribution function of the initial
molecules relative to the collision system. In order to separate
geometrical and dynamical properties, we proceed as follows.
Expanding the probability in terms of order parameters with
respect to thecollision system, we obtain similar to eq 1

which gives

It is convenient to express the order parameters〈Dq′q
(k) * 〉 in

terms of the parameters〈DQ′Q
(K) * 〉 defined by eq 4 with respect to

thedirector system since this will then easily allow to take the
symmetries of the preparation process into account. The order

parameters transform as irreducible tensors under rotation and
have the simple transformation property

which can be derived by using the corresponding transformation
property of the rotation matrices18

Substitution of eq 17 into eq 16 yields finally

where the “steric factor”Iq′Q
(K) (θ) is defined by the integral.

Equation 18 generalizes definitions given for diatomic molecules
(see e.g. refs 12 and 13). The factorsIq′Q

(K) (θ) are responsible
for the orientation alignment dependence of the cross sections
and can in principle be determined experimentally (see for
example the review by Loesch4).
For diatomic molecules we obtain from eq 18 by settingQ

) 0:

Here the steric factorsIKq′(θ) are defined by the relation

with

Finally, we list some symmetry properties of the steric factors.
Generalizing the argumentation given in refs 9 and 13, we obtain
equation

Figure 2. Scattering geometry.XYZdenotes the collision system.Z is
parallel tokB0; thekB0-kB1 plane is theXZ-plane.θ is the scattering angle.
δ andε are polar and azimuth angle of the “director” (z), respectively,
in the collision system.

σ(θ,εδø) )

∫02π
dR′∫0πdâ′ sinâ′∫02π

dγ′ W(R′â′γ′) σ(θ,R′â′γ′) (14)

W(R′â′γ′) ) ∑
kqq′

2k+ 1

8π2
〈Dq′q

(k) * 〉Dq′q
(k) (R′â′γ′) (15)

σ(θ,εδø) ) ∑
kqq′

2k+ 1

8π2
×

〈Dq′q
(k) * 〉∫02π

dR′∫0πdâ′ sinâ′∫02π
dγ′ Dq′q

(k) (R′â′γ′) ×

σ(θ,R′â′γ′) (16)

Figure 3. Relation between molecular systemx′y′z′ and the collision
systemXYZ (only z′ is shown).

〈Dq′q
(k) * 〉 ) δkKδqQ∑

Q′
〈DQ′Q

(K) * 〉Dq′Q′
(K) *(εδø) (17)

Dq′q
(k) (R′â′γ′) ) δkKδqQ∑

Q′
Dq′Q′
(K) (εδø) DQ′Q

(K) (Râγ)

σ(θ,εδø) ) ∑
Kq′QQ′

2K + 1

8π2
〈DQ′Q

(K) * 〉Dq′Q′
(K) *(εδø) ×

∫02π
dR′∫0πdâ′ sinâ′∫02π

dγ′ Dq′Q
(K) (R′â′γ′) σ(θ,R′â′γ′) )

∑
Kq′QQ′

2K + 1

8π2
〈DQ′Q

(K) * 〉Dq′Q′
(K) *(εδø) Iq′Q

(K) (θ) (18)

σ(θ,εδø) ) ∑
Kq′Q′

〈Y*KQ′〉Dq′Q′
(K) (εδø) IKq′(θ) (19)

Iq′0
(K) (θ) ) 2π( 4π

2K + 1)
1/2
I*Kq′(θ) (20)

I*Kq′(θ) )∫02π
dR′∫0πdâ′ sinâ′ Y*Kq′(â′R′) σ(θ,R′â′) (21)
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3.2. Discussion and Examples.The advantage of eq 18 is
that geometrical and dynamical factors are separated and can
be determined independently of other. The initial axis distribu-
tion of the molecular target system is characterized by the order
parameters〈DQ′Q

(K) * 〉 defined with respect to the director system,
which allows to take easily the symmetry properties of the
preparation process into account. The full information about
the dynamics is contained in the steric factors which are most
conveniently calculated in the collision frame. The elements
Dq′Q′
(K) (εδø) describe the geometry of the experiment, that is,

the orientation of the director system relative tokB0 andkB1. δ is
the angle betweenzandkB0 (Figure 2) and can be considered as
an average angle of attack.ε is the angle betweenz and the
XZ-plane (scattering plane). By varyingε, the azimuthal steric
effects can be studied.6

The order parameters〈DQ′Q
(K) * 〉 in eq 18 can be expressed in

terms of parameters that characterize the initial angular mo-
mentum distribution.9 Inserting the relevant relations into eq
18, one obtains an expression that essentially describes the vector
correlations betweenkB0, kB1, and the initial molecular angular
momentum.
Let us specialize eq 18 to the case where the initial axis

distribution is axially symmetric aroundz. From eq 6 we obtain
by settingQ′ ) 0 in eq 18

For diatomic molecules we obtain from eq 10 by settingQ )
0 in eq 23 and using eqs 20 and 22a

The physical importance of the additional order parameters with
Q′ * 0, occurring in eq 23 has been discussed in section 2.3
(eq 13). It should be noted that “brute force” techniques are
required in order to produce linear rotors in oriented states.4,10

Equations 18, 19, 23, and 24 show that the steric factors
Iq′Q
(K) (θ) can in principle be determined experimentally by
measuringσ(θ,εδø) for several anglesδ and ε, if the order
parameters are known. The main problem for theoreticians is
to calculate the steric factors for reactions of interest as a
function of energy and scattering angle. The numerical results
will point out most favorable kinematical regions and will be
helpful for experimentalists for planning measurements. A
comparison between theoretical and experimental results for all
relevant steric factors will provide a detailed test of the theory.
We will briefly consider an example assuming that only terms

with K ) 0 andK ) 2 contribute to eq 24. Following Loesch
and Stienkemeier12 and making use of eq 22 we obtain

σ0(θ) ) (1/4π)1/2I00(θ) is the cross section for collisions with
randomly oriented molecules. Equation 25 shows that under

the assumed conditions three steric factorsI20(θ), I21(θ), and
I22(θ) must be determined which requires three independent
measurements. The dependence on the azimuth angleε is
particularly simple. A possible way of determining the steric
factors would be to fixθ andδ and varyε. Differential cross
sections for electron collisions as a function ofε have been
measured by Bo¨wering et al.14 (see also the review by
Böwering19).
It follows from eq 24 that for diatomic molecules a prepara-

tion of an initially axially symmetricensemble is sufficient in
order to determine all relevant steric factors. Equation 24 is
therefore sufficient as a basis for a complete discussion.
The experimental situation is more complex for anisotropic

ensembles of polyatomic molecules as follows by inspecting
eq 23. Here, the steric factors depend on both,q′ andQ. In
order to see the consequences, consider for example molecules
with C2ν symmetry. Assuming preparation by linearly polarised
light only the order parameter〈D00

(2) 〉 ) 〈P2〉 and 〈D02
(2) 〉 )

〈D0-2
(2) 〉 are nonvanishing as shown in section 2. Specialising

eq 23 to this case, we obtain

Equation 26 shows that by varyingδ andε only the brackets
can be determined as a whole, but not the steric factors
separately. In order to obtain more information, one has to
prepare initial molecular samples without cylindrical symmetry.

4. Geometrical Interpretation of the Steric Factors

The initial molecular samples can be prepared experimentally
in various ways. For example, preparation by linearly polarized
light produces order parameters withK ) 0 andK ) 2 only. If

(i) the steric factors are real

Iq′Q
(K) (θ) ) Iq′Q

(K)*(θ) (22a)

(ii) Iq′Q
(K) (θ) ) (-1)Q-q′I-q′-Q

(K) (θ) (22b)

(iii) Iq′Q
(K) (0)) Iq′Q

(K) (π) ) 0 for q′ * 0 (22c)

σ(θ,εδ) ) ∑
Kq′Q

2K + 1

8π2
〈D0Q

(K)* 〉Dq′0
(K)*(εδ0) Iq′Q

(K) (θ) (23)

σ(θ,εδ) ) ∑
Kq′

(2K + 1

4π )1/2〈PK〉Dq′0
(K)*(εδ0) IKq′(θ) (24)

σ(θ,εδ) ) σ0(θ) + (5/4π)1/2〈P2〉[I20(θ) P2(cosδ) +

2I21(θ) d10
(2) (δ) cosε + 2I22(θ) d20

(2) (δ) cos 2ε] (25)

Figure 4. Polar plot of (a)|Y10(â′R′)| and (b)|Re(Y11(â′R′))| projected
into the scattering plane.

σ(θ,εδ) ) σ0(θ) + (5/8π2)∑
q′
Dq′0
(2)*(εδ0)[〈P2〉Iq′0

(2) (θ) +

〈D02
(2) 〉(Iq′2

(2) (θ) + Iq′-2
(2) (θ))] (26)
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molecules are oriented in external electric fields, also order
parameters withK odd contribute. The steric factors, however,
can be calculated independently of the experimental preparation
process once and for all. In this section we will consider the
geometrical importance of the steric factors for diatomic
molecules. This discussion is closely related to former treat-
ments in the literature (e.g., refs 4, 6, and 12), generalizes
however certain aspects. In the following section we will
illustrate our results with numerical data (Figures 6, 7).
Let us start with the factor

The cross sectionσ(θ,R′â′) is weighted by the spherical
harmonicY10(â′R′) for any direction ofâ′. Y10(â′R′) is zero
for â′ ) π/2 and maximal for axes parallel or antiparallel to
kB0. It follows that molecules with axes perpendicular tokB0 do
not contribute toI10(θ) and thatI10(θ) picks out predominantly
the contributions from axes directions parallel or antiparallel
to kB0. Furthermore,Y10(â′R′) is positive for 0e â′ e π/2 and
negative forπ/2 e â′ e π. These properties are illustrated in
Figure 4a, which shows the polar plot for|Y10(â′R′)| and where
the sign ofY10(â′R′) is indicated by the (() sign in the upper
and lower lobe, respectively. Note that the factor sinâ′ in eq
27 is always positive in the integration region 0e â′ e π.
Hence we can write

where we have defined

Assume thatI10(θ) has been calculated or measured as a function
of θ. Equation 28 allows then to draw some immediate
conclusions from the results by inspecting the sign of the steric
factors. IfI10(θ) is positive, then the first term in eq 28 is larger
than the second one. This means thatson the averagesσ(θ,â′)
is larger for molecular orientations within 0e â′ < π/2 (pointing
in the upper lobe of Figure 4a) than for axes orientations within
π/2 < â′ < π (pointing in the lower lobe of Figure 4a). The
opposite result holds ifI10(θ) is negative. These results are
clearly independent of the values of all other steric factors. It
should be mentioned that this result forI10(θ) allows no
conclusion on the head/tail asymmetry of the full cross section.
Several terms contribute toσ(θ) which may partly compensate
each other. In order to obtain more detailed information, one
has therefore to consider the steric factors individually.
Let us now considerI11(θ), defined by

where the reality property (22b) of the steric factors has been
taken into account. The polar plot of|Re(Y11(â′R′))|, projected
into thekB0-kB1 plane, is shown in Figure 4b, where the sign of
Re(Y11(â′R′)) is indicated by (+) and (-). The plot is axially
symmetric around theX-axis. It follows that molecules oriented
perpendicular tokB0 give the dominant contributions toI11(θ)
and that molecules oriented parallel or antiparallel tokB0 do not
contribute at all. Furthermore, a positive sign ofI11(θ) indicates
a preference for molecules with axes pointing in the left-hand

lobe of Figure 4b, and vice versa if the sign ofI11(θ) is negative
(in the sense explained above).
The three factorsI2q′(θ) can be discussed along similar lines.

These factors are independent of the direction of the molecular
axis and depend only on their alignment. The polar plots of
|Re(Y2q′(â′R′))| correspond to the usual plots of d-orbitals, and
their projection in thekB0-kB1 plane is given in Figure 5a,b.
Figure 5c shows the projection of|Re(Y22(â′R′))| in the XY-
plane. It is indicated in which parts of the lobes Re(Y2q′(â′R′))
is positive or negative. From the sign of the corresponding steric
factors one can read off which part of the lobes gives the
dominant contributions (in the sense explained above forI10-
(θ)). In particular, I22(θ) gives some information on the
azimuthalsteric effects. A similar analysis can be performed
for the other steric factors.
In conclusion, an experimental determination of the steric

factors give some immediate insight into the stereodynamical
conditions of the reactions. A comparison between numerical
and experimental data gives a very detailed test of how good
the stereodynamics is described by the theory.

I10(θ) )∫02π
dR′∫0πdâ′ sinâ′ Y10(â′R′) σ(θ,R′â′)

) (3/4π)1/2∫02π
dR′∫0πdâ′ sinâ′ cosâ′ σ(θ,R′â′) (27)

I10(θ) )∫0π/2dâ′ sinâ′ cosâ′ σ(θ,â′) -

∫π/2π
dâ′ sinâ′ |cosâ′| σ(θ,â′) (28)

σ(θ,â′) ) (3/4π)1/2∫02π
dR′ σ(θ,R′â′)

I11(θ) )∫02π
dR′∫0πdâ′ sinâ′ Re(Y11(â′R′)) σ(θ,R′â′) (29)

Figure 5. Polar plots of (a)|Re(Y20(â′R′))| and (b) |Re(Y21(â′R′))|
projected into the scattering plane. Part c shows|Re(Y22(â′R′))| projected
into theXY-plane of the collision system.
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Figure 6. Numerical results for steric factors withK odd for elastic e--CO collisions.
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Figure 7. Numerical results for steric factors withK odd for elastic e--CO collisions.
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5. Numerical Results for Elastic Collisions with CO
Molecules

In order to illustrate the general results, presented in the
preceding sections, we will give numerical results for the steric
factors for elastic collisions between electrons and COmolecules
in their vibrational and electronic ground state. Differential
cross sections for elastic and inelastic e--CO scattering for
randomly oriented molecules have been obtained by Morgan
and Tennyson15 for collision energies below 12 eV, using
R-matrix techniques. We refer to this paper for details of the
basic numerical procedure.
Using the partial-waveT-matrix elements, obtained by

Morgan and Tennyson, we calculated the steric factors up toK
) 6 (see ref 16 for details). Results are shown in Figure 6 for
steric factors with oddK and Figure 7 for evenK. The
corresponding factorsIKq′(θ) with negativeq′ follow from eq
22b. In these calculation the direction of the molecular axis is
from the C atom to the O atom.
The figures present the normalised steric factorsIKq′(θ)/I00-

(θ) as a function of the scattering angle at a collision energy of
E ) 10 eV. Figure 6 shows the orientation effect upon the
collision and Figure 7 the alignment effect. Magnitude and sign
of the steric factors vary considerably with the scattering angle.
The results can be analyzed along the lines discussed in

section 4. For example,I20(θ) is mainly negative, indicating
that contributions from molecules aligned mainly perpendicular
to kB0 are larger than from molecules aligned inkB0 direction.
From the negative sign ofI22(θ) one can deduce that an axis
alignment perpendicular to the scattering plane is more favorable
than an alignment in the plane.
An interesting result is that the steric factors vanish rapidly

with increasingK. The factors withK ) 5 andK ) 6 are
considerably smaller as the factors forK e 4. It can be expected
that similar results hold for other reactions if the dependence
of the cross sectionsσ(θ,R′â′γ′) on the direction of the molecular
axes is not too strong. In addition, it has been shown for several
cases that the order parameters become also small with
increasingK,10,11,14so that the products〈PK〉IKq′(θ) decrease even
more rapidly. Hence, it might be expected that one only need
to retain the first few terms in eq 24 in many practical cases.
In concluding this section, we point out that nogeneral

conclusion can be drawn on the convergence of the expansions
(18) and (19) (except for cases like excitation by polarized light
where only terms up toK ) 2 contribute). Our conclusions on
the relative importance of the steric factors with differentK are
deduced from our numerical results. This situation may be
different in other cases. However, one might expect that only
few terms contribute to eqs 18 and 19 if the cross section
depends only relative weakly on the axis orientation (ifσ would
be completely independent on the axis distributions only the
term withK ) 0 would be nonvanishing). Numerical calcula-
tions of the steric factors will therefore be very helpful as a
guide to experimentalists.

6. Conclusions

By applying the concept of order parameters and by explicitly
using their tensorial properties, we have derived general
expressions for differential cross sections for collisions with
anisotropic molecular ensembles. The derivations given here
generalize previous formulations given in the literature.
Our main results are eqs 18 and 23 for polyatomic molecules

and eq 24 for diatomics. In these expressions geometrical and
dynamical factors are separated. The orientation and alignment
of the initial target system are characterized by the order
parameters. These parameters allow to take efficiently the

symmetries of the preparation process into account and represent
a systematic way of approaching the structural information
contained inW(Râγ). The information on the directional
properties of the collision is contained in the steric factors. The
experimental geometry is explicitly described by the rotation
matrix elements. These expressions might be useful for
experimental and theoretical investigations of steric effects for
elastic, inelastic, and reactive collisions. The theory of the
measurement is briefly considered.
The main goal is the determination of the steric factors. A

calculation of these parameters allows to point out favorable
kinematical regions which will be useful for the planning of
experiments. Measurements or calculation of the steric factors
allow to draw some immediate conclusions on the stereody-
namics of the collision as discussed in section 4 and illustrated
in section 5. A comparison between theoretical and experi-
mental data for all relevant steric factors would be the most
detailed test of the theory under the given experimental
conditions.

Appendix

In this appendix we will briefly consider theγ-dependence
of the distribution functionW(âγ) after absorption of linearly
polarized light. We will concentrate on molecules withC2V
symmetry, assuming that initially all molecules are in their
electronic ground state (A1). The relevant distribution function
is given by eq 13.
The absorption probability of a transition is proportional to

the square of the projection of the relevant electric dipole
transition moment into the direction of the electric field vector
of the light (z-axis), and this depends on the molecular
orientation, that is, onâ andγ. In order to obtain the formal
relationship, one has to express the order parameters in terms
of the componentsMx′, My′, andMz′ of the transition moments
in the molecular frame and insert the results into eq 13. Here
we will not give the derivations but only the final result (see
for example ref 8, eq 4.71):

whereA is a constant. Let us consider an A1 f B1 transition.
Symmetry dictates that the transition moment is directed along
the molecularx′-axis (which is perpendicular to the molecular
plane). OnlyMx′ is then different from zero and eq A.1 reduces
to

It follows that (for fixedâ * 0, π) W(âγ) is maximal forγ )
0 (x′ lies within thezz′-plane) and zero forγ ) π/2. In fact, in
the latter casex′ is perpendicular to thezz′-plane and therefore
perpendicular to the electric field vector, and no absorption is
possible. In other words, there is no excited molecule in a B1

state with an orientationγ ) π/2. The variation ofW(âγ) with
the angle 2γ reflects the molecular symmetry.
For an A1-A1 transition onlyMz′ is nonvanishing, and only

My′ contributes for an A1-B2 transition. These cases can be
discussed similarly. Theâ- andγ-dependence of the molecular
distribution function is therefore a consequence of the relevant
dipole selection rules, which in turn depend on the molecular
symmetry.

References and Notes

(1) Bernstein, R. B.; Herschbach, D. R.; Levine, R. D.J. Phys. Chem.
1987, 91, 5366.

W(âγ) ) A{|Mz′|2 cos2 â + 1/2[(|Mx′|2 + |My′|2) +

(|Mx′|2 - |My′|2) cos 2γ] sin2 â} (A.1)

W(âγ) ) (A/2)|Mx′|2 (1+ cos 2γ) sin2 â (A.2)

7484 J. Phys. Chem. A, Vol. 101, No. 41, 1997 Busalla and Blum



(2) Simons, J. P.J. Phys. Chem.1987, 91, 5378.
(3) Delgado-Barrio, G.Dynamical Processes in Molecular Physics;

IOP Publishing: Bristol, 1993.
(4) Loesch, H. J.Annu. ReV. Phys. Chem.1996, 46, 255.
(5) Parker, D. H.; Bernstein, R. B.Annu. ReV. Phys. Chem.1989, 40,

561.
(6) Stolte, S.Ber. BunsenGes. Phys. Chem.1982, 86, 413.
(7) Geuzebroek, F. H.; Wiskerke, A. E.; Tenner, M. G.; Kleyn, A. W.

J. Phys. Chem.1991, 95, 8409.
(8) Michl, J.; Thulstrup, E. W.Spectroscopy with Polarised Light; VCH

Publishers: New York, 1986.
(9) Blum, K. Density Matrix Theory and Applications, 2nd ed.;

Plenum: New York, 1996.

(10) Friedrich, B.; Pullmann, D.; Herschbach, D. R.J. Phys. Chem.1991,
95, 8118.

(11) Neitzke, H. P.; Terlutter, R.J. Phys. B1992, 25, 1931.
(12) Loesch, H. J.; Stienkemeier, F.J. Chem. Phys.1993, 98, 9570.
(13) Ostrawsky, C.; Blum, K.; Gillian, G.J. Phys. B1995, 28, 2269.
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